46 research outputs found

    Applications and Challenges of Real-time Mobile DNA Analysis

    Full text link
    The DNA sequencing is the process of identifying the exact order of nucleotides within a given DNA molecule. The new portable and relatively inexpensive DNA sequencers, such as Oxford Nanopore MinION, have the potential to move DNA sequencing outside of laboratory, leading to faster and more accessible DNA-based diagnostics. However, portable DNA sequencing and analysis are challenging for mobile systems, owing to high data throughputs and computationally intensive processing performed in environments with unreliable connectivity and power. In this paper, we provide an analysis of the challenges that mobile systems and mobile computing must address to maximize the potential of portable DNA sequencing, and in situ DNA analysis. We explain the DNA sequencing process and highlight the main differences between traditional and portable DNA sequencing in the context of the actual and envisioned applications. We look at the identified challenges from the perspective of both algorithms and systems design, showing the need for careful co-design

    Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches.

    Get PDF
    Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems

    Biogeochemical characteristics of internal wave driven sediment and nutrient resuspension in Monterey Bay : implications for global new production

    No full text
    Using discrete water column measurements and surveys conducted using an autonomous underwater vehicle (AUV), intermediate nepheloid layers (INLs) -- particle-nutrient-rich layers -- 35-110m thick and horizontally extending up to 15km at depths were observed between 40-150m in Soquel Canyon, one of the main tributaries of the Monterey Canyon. This study investigates the characteristics, context and composition of INLs in Soquel Canyon and considers the global biogeochemical implications of INLs along continental margins

    Environmental DNA (eDNA) Shedding and Decay Rates to Model Freshwater Mussel eDNA Transport in a River

    No full text
    Freshwater mussels are vital components of stream ecosystems, yet remain threatened. Thus, timely and accurate species counts are critical for proper conservation and management. Mussels live in stream sediments and can be challenging to survey given constraints related to water depth, flow, and time of year. The use of environmental DNA (eDNA) to monitor mussel distributions and diversity is a promising tool. Before it can be used as a monitoring tool, however, we need to know how much eDNA mussels shed into their environment and how long the eDNA persists. Here, we present a novel application of eDNA to estimate both the presence/absence and abundance of a freshwater mussel species, <i>Lampsilis siliquoidea</i>. The eDNA shedding and decay rates reported within are the first for freshwater mussels. We determined that eDNA shedding was statistically similar across mussel densities, but that first-order decay constants varied between experimental treatments. Finally, we effectively modeled downstream transport of eDNA and present a model that can be used as a complementary tool to estimate mussel density. Our results suggest that eDNA has the potential to be a complementary tool to survey mussels and enhance current efforts to monitor and protect freshwater mussel biodiversity

    Data from: Persistence of marine fish environmental DNA and the influence of sunlight

    No full text
    Harnessing information encoded in environmental DNA (eDNA) in marine waters has the potential to revolutionize marine biomonitoring. Whether using organism-specific quantitative PCR assays or metabarcoding in conjunction with amplicon sequencing, scientists have illustrated that realistic organism censuses can be inferred from eDNA. The next step is establishing ways to link information obtained from eDNA analyses to actual organism abundance. This is only possible by understanding the processes that control eDNA concentrations. The present study uses mesocosm experiments to study the persistence of eDNA in marine waters and explore the role of sunlight in modulating eDNA persistence. We seeded solute-permeable dialysis bags with water containing indigenous eDNA and suspended them in a large tank containing seawater. Bags were subjected to two treatments: half the bags were suspended near the water surface where they received high doses of sunlight, and half at depth where they received lower doses of sunlight. Bags were destructively sampled over the course of 87 hours. eDNA was extracted from water samples and used as template for a Scomber japonicus qPCR assay and a marine fish-specific 12S rRNA PCR assay. The latter was subsequently sequenced using a metabarcoding approach. S. japonicus eDNA, as measured by qPCR, exhibited first order decay with a rate constant ~0.01 hr -1 with no difference in decay rate constants between the two experimental treatments. eDNA metabarcoding identified 190 organizational taxonomic units (OTUs) assigned to varying taxonomic ranks. There was no difference in marine fish communities as measured by eDNA metabarcoding between the two experimental treatments, but there was an effect of time. Given the differences in UVA and UVB fluence received by the two experimental treatments, we conclude that sunlight is not the main driver of fish eDNA decay in the experiments. However, there are clearly temporal effects that need to be considered when interpreting information obtained using eDNA approaches

    metadata file

    No full text
    List of samples sequenced with library and tag combinations; to be paired to OTU tabl

    OTU table after bioinformatics pipeline

    No full text
    Table of OTUs (rows) by sample (columns) after bioinformatics pipeline. See "OTUs fasta file" for representative sequences of each OTU. See "metadata file" to match library and tag number of samples to sample names

    Oceans in Peril: Grand Challenges in Applied Water Quality Research for the 21st Century

    Get PDF
    Oceans cover most of the planet and 60% of the world\u27s population lives near the coast. Anthropogenic activities along coastlines and in the open ocean have placed the oceans in peril. According to a Pew Oceans Commission Report, among the greatest threats to the ocean are land-based runoff from coastal development, nutrient pollution, overfishing, and invasive species. Here, we describe threats due to microbial, nutrient, chemical, and plastic pollution in addition to declining biodiversity and describe fundamental and applied research needed to mitigate the threats. While the research needs are diverse, we identify several research foci that transcend individual threats: monitoring, fate and transport studies, modeling, innovative natural and engineered treatment systems, and toxicity and health studies. Research within the environmental engineering and science community that addresses these needs will contribute to improving ocean health
    corecore